beecrowd | 2665
# Hyperfield

**Timelimit: 1**

By Maratona de Programção da SBC, ACM ICPC 2017 Brazil

Two anchors are given, two points **A** =
(**X _{A}** , 0) and

To "connect" a point *v* ∈ **P **we need to draw the two line segments
(*v*, **A**) and (*v*, **B**). We want to
connect lots of points, but in such a way that the segments intersect only at the anchors. For example,
the middle figure shows two points, 1 and 4, which cannot be connected at the same time, because there
would be intersection of the segments outside the anchors. The rightmost figure shows that it is
possible to connect at least 3 points, 8, 5 and 3, with intersection only at the anchors.

Your program should compute the maximum number of points that it is possible to connect with intersection of segments only at the anchors.

The first row of the entry contains three integers, **N** (1
≤ **N** ≤
100), **X _{A}** and

Your program should print a line containing an integer, representing the maximum number of points of
**P** that can be connected with segment intersection only at the anchors.

Input Samples | Output Samples |

4 1 10 2 4 5 1 6 5 7 8 |
3 |

2 2 8 3 4 7 4 |
1 |